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Abstract 

We describe some single-sided BPS domain wall configurations in M-theory. These are smooth 
non-singular resolutions of Calabi-Yau orbifolds obtained by identifying the two sides of the wall 
under reflection. They may thus be thought of as domain walls at the end of the universe. We 
also describe related domain wall type solutions with a negative cosmological constant. 0 2000 
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1. Introduction 

It is now widely recognized that topological defects with p spatial dimensions invariant 
under half the maximum number of supersymmetries - BPS configurations - play a 
central role in non-perturbative string theory and M-theory. If p is less than (n - 3), where 
n is the space-time dimension, then such objects can be studied in at least two limits. One is 
the light approximation in which the gravitational field that the objects generate is ignored. 
Treated classically, the world-volume theory of such objects is described by a Dirac-Bom- 
Infeld type action. The other is the heavy approximation, in which the gravitational field 
generated by the objects is taken into account and one looks for solutions of the supergravity 
equations of motion. 

If p -C n - 3 heavy branes give rise to asymptotically flat metrics in directions transverse 
to the brane, and from a distance they behave more or less like light branes moving in a flat 
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background. If p = n - 3 (vortices) or p = n - 2 (domain walls), however, the metrics 
they generate are not asymptotically flat. For vortices - for example, the 7-brane of the lo- 
dimensional type IIB theory -the metric has an angular deficit. In the case of domain walls, 
their effect on space-time can be even more drastic. For example, conventional domain 
walls, even in the thin-wall approximation, bring about the compactification of space [ 11. 
This happens as follows. Either side of the domain wall is isometric to the interior of a time- 
like hyperboloid in Minkowski space-time IE - n ‘9’ To get the entire space-time one glues . 
two such domain walls back to back. The induced metric is continuous across the domain 
wall but the second fundamental form has a discontinuity which gives the distributional 
stress tensor. Another feature of conventional domain walls, which is more or less obvious 
from the description just given, is that one does not expect to have more than one in a static 
configuration. 

Domain walls of an unconventional (orbifold) type play an important role in the approach 
of HoIava and Witten [2,3] approach to the Es x Es heterotic string theory in M-theory. 
They also have a drastic global effect on the structure of space-time. Of course in addition 
to their gravitational fields one must take into account the effects of anomalies and the 
four-form field strength. 

In this paper we are going to study the global structure of some other space-times con- 
taining BPS domain walls that have arisen in M-theory. A striking feature of M-theory is 
the extent to which configurations in (1 1)-dimensions are non-singular even though they 
may appear to be singular in lower dimensions. We shall therefore be particularly interested 
everywhere in non-singular configurations. 

2. Bianchi domain walls 

We shall consider p-brane solutions of the form 

M4 x v3,‘, 

where It44 is a non-compact Riemannian four-manifold which is either Ricci-flat or has 
negative cosmological constant. If p = 3 we would be considering domain walls in five 
space-time dimensions. We are looking for metrics on M4 which depend only on one coor- 
dinate t, transverse to the domain wall. The metric should be homogeneous in the directions 
parallel to the wall. Mathematically this means that we are looking for cohomogeneity 1, 
or hypersurface homogeneous, metrics invariant under the action of Lie group G acting 
transitively on three-dimensional orbits. In the cases we are interested in G may be taken 
to be three-dimensional and the possible groups have been classified by Bianchi (see e.g. 
[4]). The problem is very similar to that encountered in studying homogeneous Lorentzian 
cosmologies and we shall freely use standard results from that subject [5]. The Bianchi 
types relevant to this paper are type I, II, VI0 and VII,. Domain walls of types I and II are 
discussed in Section 3, while the treatment of the more “exotic” solutions is relegated to 
Section 6. 
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Table 1 
Some of the Bianchi types 

Bianchi type n2 n3 Group of motions 

I 0 0 0 w 
II 0 0 1 Nil 

WI 1 -1 0 E(l. 1) 

VII0 1 1 0 E(2) 

In the following we shall find that all Ricci-flat solutions are singular and describe how 
the singularity of the type II solution may be resolved. The resolution of this singularity 
gives a complete Ricci-flat Kahlermanifold that we shall call the BKTY metric. ’ 

In the light of the recently proposed AdS/CFT correspondence [9-l l] it is instructive to 
investigate domain walls in the Anti-de Sitter background. Sections 5 and 6.3 are therefore 
devoted to the study of four-manifolds of the above-mentioned Bianchi types with negative 
cosmological constant. 

2.1. Bianchi models 

Let us now be more specific about the four-manifolds M4 in question. Spaces of interest 
are homogeneous manifolds with the following ansatz for the metric: 

ds* = dt* + a’(t)(a’)* + b*(t)(a*>* + c2(t)(03)*. 

Here t is the imaginary time and the metric coefficients are functions of t only. The one- 
forms {ok}, k = 1,2,3, are left-invariant one-forms of the three-dimensional group of 
isometric motions G and as such satisfy 

dok = -ink6ijkai A c~j, no sum over k, 

where constants {nk} are the structure constants of G. The four-manifolds may be classified 
according to the group of isometric motions. This is the Bianchi classification in which each 
type corresponds to a particular set of values of the structure constants {nk). In the rest of 
the paper manifolds of four Bianchi types will arise, whose properties are summarized in 
Table 1. Note that all four groups of isometric motions are solvable, in fact they all have one 
non-trivial commutator. The Einstein equations for the metric (1) reduce to the following 
set of second-order ODES: 

” . . 

-+Uf$+;, 
a 

R, = WC)’ 
1 abc 

+I J-- [n:a4 
2 a*b*c* 

- (nzb* - njc*)*], (3) 

’ The name BKTY is derived from the initials of the authors of [C-8] who constructed this space as a certain 
degeneration of the K3 surface. 
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R3 = @be)’ 1 1 
3 abc + 2 a2b2c2 

[&4 - (n,a2 - mb2121, 

where ir = da/dt, etc. If the metric on M4 is Ricci-flat, i.e. Rg = 0, Eqs. (2)-(5) are 
integrable in most cases. The resulting manifolds are singular. 2 

For non-Ricci-flat manifolds, in particular for manifolds with Ri = A$, A < 0, the 
Einstein equations are not in general integrable. However, a number of solutions with extra 
symmetries exist. For example, in Section 5 we discuss the Bergmann metric - a Bianchi 
type II solution with negative cosmological constant. Unlike the Ricci-flat Bianchi type II 
solution, the Bergmann metric is complete. 

2.2. Monge-Amp&e equation 

From the theory of Kahler manifolds it is known that the Kahler metric may be obtained 
from a real-valued function of complex holomorphic coordinates z, Z = {z”, 2”) called the 
K;ihler potential: 

goi = a,age, 2). 

Here 8, = a/aza and a6 = a/aZb. A K%hler manifold is Einstein-K;ihler if the Kahler 
metric g,g satisfies the Einstein equations: 

These are equivalent to the requirement that the K%hler potential satisfy the so-called 
Monge-Ampere equation obtained as follows. The Ricci tensor is given by 

IX,& = -a,a6 logdet g(z, z), 

and hence the Einstein-Kahler condition reduces to 

det(a,agq = edAK. (6) 

In general this is a complex partial differential equation solving which is not straightforward. 
If, however, the manifold possesses certain amount of symmetry, the Monge-Ampere equa- 
tion may reduce to an ODE. In the following sections we shall deduce the Monge-Ampere 
equations and their solutions for most of the K8hler manifolds that we study. 

3. Vacuum solutions of Bianchi type I and II 

We shall begin by assuming that the domain walls are invariant under three translations, 
i.e. that they are Bianchi type I, or Kasner, but we shall find that to be supersymmetric 

’ Many self-dual four-dimensional vacuum solutions of various Bianchi types have been found in [ 121. 
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objects they should instead be invariant under the nilpotent Bianchi type II group Nil often 
called the Heisenberg group. 

3. I. Kasner walls 

One’s first idea might be to choose the metric g,~ on A44 to depend only on one “trans- 
verse” coordinate, call it t, and to be independent of the other three coordinates x ’ , x2. X-i, 
say. Thus the metric would admit an isometric action of R” or, if we identify, T” and falls 
into the vacuum Bianchi I or Kasner class of solutions [ 131: 

d.T’ = dt* + t2al (h’)’ + t2”2(dxZ)2 + t2a3 (dx3)‘, (7) 

where constants CY~ , cq, a3 satisfy 

CYt +CQ+cw3 = 1 =o~+cX1,2+c+ (8) 

There are two problems with this metric. The first problem is that if metric (7) is not flat, it 
is singular at the domain wall t = 0; and the second problem is that it is not BPS. 

Consider for example the rotationally symmetric case 

(c-wl,~2,~3) = ($ 4, 5). 

Metric (7) is then singular at t = 0, but complete as t + 00. Thus, in accordance with our 
general remarks made in Section 1, it is not asymptotically flat in the usual sense although 
the curvature falls off as t -*. 

3.2. BPS walls: Bianchi type II 

To be BPS the manifold M4 must admit at least one, and hence at least two covariantly 
constant spinors. If the solution admits at least one tri-holomorphic Killing vector it may 
be cast in the form 

ds2 = V-‘(ds + oi dx’)2 + v dx’, 

where x = (xl, ,x2, x3) with 

(9) 

curl w = grad V. 

One may either regard the ignorable coordinate T as lying in the world-volume of the p- 

brane or as a Klauza-Klein coordinate. Obviously one may entertain both interpretations 
simultaneously in which case one is considering the double-dimensional reduction of a 
brane in a lower dimensional space [ 141. For the time being we will not tie ourselves down 
on this point. In order to get a domain wall solution we want some sort of invariance under 
two further translations and we are naturally led to choose for the harmonic function 

v =z, 
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where we now interpret the coordinate z as a transverse coordinate. With x 1 = x, x2 z y, 
x3 E z metric (9) becomes 

ds2 = z dz2 + z(dx2 + dy2) + z-‘(dt - x dy)2. 

The transverse proper distance is given by 

(10) 

t = zz312 
3 * 

The metric is complete as z + +co, the curvature again falls off as te2 but it clearly has 
a singularity at z = 0, at which the signature changes from (+ + + +) to (- - - -). We 
shall return to this point shortly. 

The Monge-Ampere equation and the Kahler potential for this metric will be given in 
Section 5.3 where suitable complex coordinates are introduced. 

3.3. Geometrical considerations and the Heisenberg group 

Evidently metric (10) is not invariant under translations in the y coordinate; nevertheless 
it admits a three-dimensional group of isometries. The metric may be written in the general 
form (1) so that the group of isometric motions is manifest 

213 
((a’)2 + ((T2)2), (11) 

where (ok} are left-invariant one forms on the Nil or the Heisenberg group. From this point 
on we shall refer to the metric (10) (or (11)) as the Heisenberg metric. The Heisenberg group 
may be defined as the nilpotent group Nil= (g} of 3 x 3 real-valued upper triangular matrices 

1 n t 
g= 0 1 y . 

( 1 0 0 1 

The Lie algebra of Nil has as a basis 3 : 

+ i g), e2=(; i i), e3c(; i A) 

and the only non-vanishing commutator is 

b-2, e21 = e3. 

The basis elements {ek} correspond to three right-invariant Killing vector fields 

R2=;. R3=;7 

3 we adhere to the conventions that if a group G with Lie algebra [e, , eb] = CaCbec acts on the left on a 
manifold M then the Killing vector fields & have Lie brackets [& , Rb] = -C, ‘bRc, while the left-invariant 
one-forms g-’ dg = e,a“ satisfy dac = -iCac# A cb. 
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for which the only non-vanishing commutator is 

[RI, R21 = -R3; (12) 

and three left-invariant one-forms 

a’ = dx, a2 = dy, a3 = dt -xdy, 

whence 

da’ = -0’ ~0~. 

(13) 

In addition this metric admits a rotational Killing vector of the form 

(14) 

This Killing field m induces a rotation of o ’ into a2 but leaves o3 invariant. 
The four-dimensional Heisenberg manifold (10) is Ricci-flat KWer and hence carries 

a hyperK;ihler structure. To exhibit the three Kalrler forms let us introduce the following 
orthonormal basis of one-forms {e”, ek}: 

eO=z- “2(dt - x dy), e1 =z iI2 dx, 

e2 = z ‘I2 dy, e3 = z ‘I2 dz. (15) 

In terms of these frames the three self-dual two-forms which are the Kahler forms are 

Q., = e” A e’ + e2 A e3, and cyclic permutations, 

and for the Heisenberg metric (10) these become 

(16) 

a, = (dt - x dy) A dx + z dy A dz, 
D,=(dt-xdy)~ dy+zdzr\ dx, 
n,=(dt--xdy)r\ dz+zdxr\ dy. 

(17) 

It is easily seen that the self-dual two-forms 52,, L2, and 52, - the K5hler forms - are 
closed and hence harmonic. They are clearly invariant under the action of the Heisenberg 
group. However, only 52, is invariant under the circle action generated by the rotational 
Killing field m (14). 

3.4. Circle bundles and volume growth 

If one wishes to identify the coordinates x and y to obtain a two-dimensional torus one is 
forced to make appropriate identifications of the coordinate t . The result is a circle bundle 
over T2. Such bundles &fk are indexed by an integer k which is essentially the Chem class. 
They are often referred to as Nilmanifolds. 

If the periods of (x, y, r) are (L,, L,, L,) then one must have 

LL, 
k=-- 

L 
E z. (18) 
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If that is true then 

exp(L,el) expU+2) exp(-L,el) exp(-L,ed = exp(L,L,ed, 

and hence exp(L,et), exp(L,ez) and exp(L,es) will close on a discrete group n/k. One 
then has 

Mk = NilINk, 

which clearly admits a global right action of U(1) = exp(ze3). 
The curvature of the connection pulled back to the base T2 is 

F = da3 = dy A dx 

and the Dirac quantization condition is 

1 - 
s 

F=kEZ. 
Lr T2 

(19) 

We shall see later that the relevant value of the integer k in our case is k = 3. Formula 
(19) takes on a more conventional appearance if one chooses L, = 27r. Alternatively, one 
could think of e = 2rr/L, as an electric charge. It has been known for some time that a 
Kaluza-Klein reduction on the Heisenberg group gives rise to a uniform magnetic field 
[15]. Interestingly, since the present solution is BPS, it should be stable against production 
of monopole-anti-monopole pairs. This is in contrast to other examples of magnetic fields 
in Kaluza-Klein theories, for example in vacua studied in [ 16,171 such monopole-anti- 
monopole pairs are produced. 

The curves of constant (x, y, t) are geodesics orthogonal to the group orbits and the 
coordinate t is the radial distance. If the orbits are compact we may estimate how the four- 
volume of a geodesic ball increases with t by calculating the four-volume of the metric (10) 
between t = tl say and t. This is easily seen to grow with t as t4i3. We shall use this fact 
in Section 4.5 to compare with the work of Bando, Kobayashi, Tian and Yau [6-81 on an 
exact metric on the complement of a smooth cubic curve in CP2. 

4. Resolution of the singularity 

In this section we describe the physical motivation for resolving the singularity of the 
Heisenberg manifold (10) and analyse the underlying mathematical structure of the proposed 
resolution. 

4.1. Sbranes, 6-branes and T-duality 

The metric (10) has been reached previously by a different route. The massive type IIA 
lo-dimensional theory of Romans [ 181 admits BPS solutions corresponding to Dirichlet 8- 
branes whose properties have been discussed by Polchinski and Witten [ 191 and Bergshoeff 
et al. [20]. The solutions are based on a harmonic function of the coordinate transverse to the 
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8-branes which has discontinuities at the location of the 8-branes. The relation of Romans’ 
theory to 11-dimensional supergravity theory is unclear4 However, under a double T- 
duality with respect to two coordinates lying in the 8-brane, x and y say, it may be reduced 
to a 6-brane solution of the IIA theory compactified to eight dimensions. Under T-duality, 
the coordinates x and y become transverse coordinates, and strictly speaking, because the 
solution is independent of the coordinates x and y one has a superposition of 6-branes. A 
6-brane solution of the lo-dimensional type IIA theory may be lifted to 1 l-dimensions to 
give a BPS 7-brane wrapped around the 1 lth dimension. In other words the 1 l-dimensional 
7-brane is a Ricci-flat metric of the form 

@’ x M 43 c-20) 

where M4 is a multi-Tat&NUT metric of the form (9): 

ds2 = V-‘(dt + wi dX’)2 + V dx2 

with 

curl w = grad V. 

The coordinate t is the 1 lth direction. Coordinates x are transverse to the 6-brane. A single 
6-brane corresponds to the Taub-NUT metric with positive mass which has 

v=1+5 

In order to get a superposition of 6-branes which is independent of x and y (at least up to 
gauge transformations) one should choose 

v =z, 

and this is indeed what Bergshoeff et al. [20] found. 

4.2. Sources 

As it stands, metric (10) is singular at z = 0. In fact this singularity resembles the 
singularity in the self-dual Taub-NUT metric with negative mass parameter for which V = 
1 - 1 /r in (9). On the three-surface r = 1 the metric changes signature from (+ + + +) to 
(- - - -). The Tat&NUT metric with negative mass parameter is known to be asymptotic 
to a complete topologically non-singular self-dual Riemannian manifold called the Atiyah- 
Hitchin manifold [22]. The presence of the singularity at r = 1 is a clear indication of the 
fact that the Tat&NUT approximation is broken already at values of r greater than 1. It is 
natural to suppose that something similar may be happening in the case of the Heisenberg 
metric (10). Indeed in the next section we shall make a concrete proposal for the exact 
metric. 

4 See, however, a very recent paper of Hull [21]. 
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However, Bergshoeff et al. [20] and others writing on supergravity domain walls [23] do 
something else. They replace z by ]z 1 which results in a configuration symmetric under the 
reflection z + -z. The justification for this procedure is that one has inserted a distributional 
source at z = 0 representing the domain wall and the regions z > 0 and z < 0 correspond 
to the two sides of the domain wall. Geometrically this resembles but is not equivalent to 
the procedure of Israel [24] used in classical general relativity who describes a shell of 
matter by gluing together two smooth space-times M* across a hypersurface .E. The Israel 
matching conditions are that the two metrics gZ$ induced on E from M* agree. One then 
evaluates the distributional stress tensor from the discontinuity in the second fundamental 
forms (Kf - Kij) across Z. 

From the point of view of M-theory there are two objections to doing this in the present 
case: 
??There are no obvious sources in M-theory. 
??The induced metric on the hypersurface Z: given by z = 0 is singular. 

4.3. Orbifold walls 

An alternative attitude to the singularity of (10) at z = 0 would be to identify the region 
z > 0 with the region z < 0. The singularity would then be viewed as a consequence of the 
fact that the reflection has a fixed point set. Thus one has something analogous to the two 
orbifold domain walls at the ends of an interval in Hofava and Witten’s compactification 
of the 11-dimensional M-theory on S’ x Z2 to give the Eg x Es heterotic theory in 10 
dimensions [2,3]. 5 In the formulation of Lukas et al. [26] one considers the 1 l-dimensional 
metric on lE3,’ x S’/Z2 x X6 

1 4 ds2 = HgfiV + H* dy2 + Hg;,, 

where gi, is the four-metric on the flat Minkowski space-time lE3~‘, y the coordinate 
on the interval S’/Z2 ranging from --np to rrp, and gzB is the metric on the compact 
Calabi-Yau space X6. Function H is a harmonic function linear in y and invariant under 
the reflection y + - - y. In addition, there is a non-vanishing four-form field strength in 
the 11 -dimensional theory. In the effective five-dimensional theory obtained by generalized 
Kaluza-Klein dimensional reduction on the Calabi-Yau space X6, this solution can be 
viewed as a pair of 3-brane domain walls on the orbifold fixed planes y = 0 and y = 
np. The 3-branes are in fact the M-theory 5-branes with two world-volume dimensions 
“wrapped” on a two-cycle in X6. 

In our case the solution is defined on lE6, ’ x R+ x Nil, where Iw+ is parametrized by z > 0 
and the three-manifold Nil parametrized by {x, y , t } is the group manifold of the Heisenberg 
group. We may think of this as a 9-brane solution of 1 l-dimensional supergravity where 
the world-volume of the 9-brane is taken to be Nil x lE6, ‘. Replacing Nil by Mk = Nil/& 
defined in Section 3.4 amounts to “wrapping” the 9-brane on the S’ bundle over T2. Just 

5 For an earlier discussion of gauge theories on orbifolds see e.g. [25] 
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as in the Hoiava-Witten case we do not have the full SO (9, 1) Lorentz invariance, rather it 
is broken to SO(6, 1) x Nil. 

4.4. Scherk-Schwarz reduction to seven dimensions 

In the light of the comments above, particularly the absence of Lorentz invariance, perhaps 
the most attractive interpretation of the solution (10) is that adopted by Lavrinenko et al. 
[27]. One regards it as a solution of the so-called “massive” eight-dimensional theory that 
is obtained by reducing 11-dimensional supergravity 2 la Scherk and Schwarz [28]. In 
other words, one restricts the 1 l-dimensional theory to solutions invariant under the action 
of the three-dimensional Heisenberg group. The resulting theory has a potential for the 
scalar fields arising from the reduction and as a consequence there is no solution with the 
eight-dimensional Poincare invariance. Lavrinenko et al. [27] therefore proposed using the 
BPS solution (10). In their interpretation z is, as with us, the transverse coordinate (i.e. the 
eighth coordinate) and (x, y, 7) are the ninth, 10th and 11 th coordinates in no particular 
order. Since the size of the x and y directions goes to infinity as z + 0;) and the size of 
the 7 direction goes to zero, the Scherk-Schwarz reduction is not really a compactification 
even if one identifies the coordinates so as to obtain a circle bundle over a two-torus. It is, 
however, certainly a consistent truncation of the theory. 

4.5. Blowing up the singularity 

If the configuration (10) really does come from M-theory we still face the problem of the 
source. We have two possibilities: 
?? either to follow Bergshoeff et al. [20] and Lavrinenko et al. [27] and take the view that 

the domain wall has two sides, 
?? or to adopt the orbifold interpretation and identify the regions of positive and negative Z. 

Both approaches give rise to a singularity. The question arises as to whether one can 
somehow smooth out the singularity? We are going to argue that the answer is no if we 
adopt the first course and yes if we adopt the second. Assuming that only gravity with no 
extra form-fields is present, we thus seek a non-singular Ricci-flat BPS metric which is 
asymptotic to the Heisenberg metric (10). 

To see that the first approach is ruled out we note that if the singularity could be resolved, 
then keeping coordinates (x, y, 7) would give a complete Ricci-flat metric on Iw x C, where 
.E is a closed complete three-manifold. In particular, the manifold would have two “ends”, 
i.e. two infinite regions. However if this were true we could construct a “line” between the 
two ends, i.e. a geodesic which minimizes the length between any two points lying on it. 
But by the Cheeger-Gromoll theorem this is impossible (see e.g. [29]). Thus we are forced 
to adopt the second course of action which is investigated in detail in the following section. 

Before doing so it is perhaps worthwhile pointing out the analogy of the situation in 
question with the case of the blow up of lE4/B2. One might have wondered if it is possible 
to glue together two copies of E4 to get a Ricci-flat wormhole-like structure with topology 
R x HP”, Again by the Cheeger-Gromoll theorem this cannot happen. In fact we know that 
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the correct blow up of E4/Zz is the Eguchi-Hanson manifold on the cotangent bundle of 
@P’ [30] and that this manifold has only one infinite region. 

Another completely analogous situation is the Tat&-NUT approximation to an orientifold 
plane. This is obtained by taking the metric (9) with V = 1 - l/r and making a further 
identification [31]. The metric is incomplete because of the singularity at r = 1. This 
singularity cannot be resolved by joining together two copies of the Tat&NUT metric 
across r = 1 because this would also produce a manifold with two ends. The correct way to 
blow up the singularity of the Taub-NUT metric is to pass to the Atiyah-Hitchin manifold. 

4.6. Complement of a cubic in CP2: the BKTYmetric 

We now turn to the problem of finding, or more properly speaking identifying, the exact 
metric of which the Heisenberg metric (10) is an asymptotic approximation. This task is 
greatly facilitated by the extremely helpful review of Kobayashi [32] on degenerations of 
the metric on K3 and in what follows we shall rely heavily on that reference. The general 
self-dual four-metric on K3 has (including an overall scale) a 58 parameter moduli space. 
As we move to the boundary of the moduli space in certain directions the four-metric 
may decompactify, while remaining complete and non-singular. Among the degenerations 
discussed by Kobayashi there is one he refers to as type II. It may be constructed by 
considering the complement M4 = @P* \ C of a smooth cubic curve C in the complex 
plane CP2. This has a Kahler metric: the Fubini-Study metric which is incomplete because 
the cubic has been removed. However, using, general existence theorems for solutions of 
the Monge-Ampere equation Yau, Tian, Bando and Kobayashi [6-81 have shown that there 
exists a complete non-singular Ricci-flat K%hler (and hence self-dual) metric on M4. Clearly 
the metric must blow up on the cubic C which corresponds to infinity. 

Consider now the neighbourhood of the cubic C. The curve itself is topologically a two- 
torus T2. A normal neighbourhood consists of a disc bundle over T2. The centre of the 
disc corresponds to infinity in M4. The radial direction corresponds to a geodesic in the 
self-dual metric. A surface of constant radius is a circle bundle over the torus. This is the 
three-dimensional Nilmanifold. 

Kobayashi tells us that the Nilmanifold collapses as we approach infinity in such a way 
that the metric spheres are an S’-bundle over T2, the size of the St falls off as tp1i3 (t is the 
radial distance) and the size of each cycle in T2 grows as t ‘/3. The volume of a metric ball 
grows as t . 4/3 This is exactly the behaviour of the Heisenberg metric (11) . It is therefore 
very plausible that the metrics constructed by Yau, Tian, Bando and Kobayashi do indeed 
asymptote to the metric (11). In what follows we shall assume that this is true. 

The topology of M4 is non-trivial 6 : it is not simply connected and has 

HI (M4) = Z3, Hz(M4) = Z @ Z. 

Hence if arguments like those in [33] apply, the manifold should admit at least two normal- 
izable anti-self-dual two-forms. Using the analysis of Hawking and Pope [33] one deduces 

6 We thank Ryushi Goto for this computation. 
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that there should be a 2 x 3 = 6 dimensional family of transverse traceless zero modes 
of the Lichnerowicz operator. Adding the trivial overall scaling we expect to find a seven- 
dimensional family of metrics. 

4.7. Gravitational action 

Complete Ricci-flat (vacuum) Einstein manifolds are gravitational instantons. It is of 
interest to estimate their contribution to the path integral of the Euclidean quantum gravity 
by evaluating their gravitational action. If M is a non-compact manifold or a compact 
manifold with boundary 8 M the gravitational action is 

(21) 

where R is the Ricci tensor and K: is the second fundamental form on M. The first term 
is the contribution from the bulk which vanishes for Ricci-flat manifolds; the second term 
is the contribution from the boundary (possibly boundary at infinity). Traditionally only 
four-manifolds were regarded as gravitational instantons, however expression (21) is valid 
for complete Ricci-flat Einstein manifolds in any dimension. 

Let us estimate the contribution from the boundary. Let n be a vector normal to the 
boundary aM, then the second term in (21) is 

1 - 
s 87~ ?lM 

TrK: = &&(Vol aM). 

By Vol aM we mean the unit volume of the boundary. For four-dimensional Ricci-flat 
manifolds, if t is the radial distance the boundary term contribution to the action is finite if 
Vol 6'M be no faster than linear in t. This implies that the volume growth of a large metric 
sphere at infinity should grow no faster than t2 . Similarly, for higher-dimensional instantons 
the “critical” volume growth for which the boundary contribution to the action is finite (but 
not necessarily vanishing) is t2. 

The BKTY manifold possesses a non-compact complete Ricci-flat K5hler metric with 
the Heisenberg end and can thus be viewed as a gravitational instanton. Since it is Ricci-flat, 
its gravitational action receives no contribntion from the first term in (21). At infinity the 
BKTY metric looks like the Heisenberg metric (11). The boundary of (11) at large values 
oft looks like an S’ bundle over T2, where the two-torus parametrized by x, y, and r is the 
fibre coordinate. Hence the second term in (21) is 

1 - 
s %‘C i9M 

Trlc = &A(VolaM) = ki 
3 i/3 

[() 1 21 v. 

V = L, L,L, where L,, L, and L, are the periods of x, y and t as described in Section 3.4 
and we get 

3 ( > ? 

-2/3 L,L,>L, 

16n. 
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Note that the boundary unit volume grows as t ‘I3 which is slower than the critical estimate 
t, hence it is not surprising that the gravitational action of the BKTY instanton is finite and 
tends to zero as t + foe. 

5. Bianchi types I and II with negative cosmological constant 

In this section we look for p-brane solutions of the form M4 x lEP-3,‘, where now M4 
is not a Ricci-flat manifold but rather a four-manifold with negative cosmological constant. 
Such solutions may be interpreted as branes in the Anti-de Sitter background and are likely 
to be of interest in connection with the AdS/CFT [9-l l] correspondence. 

Here we focus on four-manifolds of Bianchi types I and II. The relevant metrics must 
be solutions of the Einstein’s equations (2)-(5) with RE = AcS~, A < 0, and appropriate 
values of the structure constants nk given in Table 1. 

5.1. Bianchi type I 

In this case nk = 0 and Einstein equations are integrable. While there is no polynomial 
solution like the Kasner metric (7), the solution is obtained by replacing Fk in (7) with 

sinh( mt ) 

tanh((m/2)r) 
)“’ (tan” (Fr)r, 

where the powers (Yk again satisfy Eq. (8). Setting M 1 = 1, we get a complete non-singular (in 
contrast with the singular Kasner metric) instanton if the coordinate x is suitably identified. 
This Kasner-Anti-de Sitter metric could be used to construct domain walls. Note, however, 
that like its vacuum counterpart (7) this metric is not BPS. 

5.2. Bianchi type II: the Bergmann metric 

Substituting the relevant structure constants into the Einstein equations (2)-(5) we find 
b(r) = coa(t) + cl. However, we are only interested in self-dual metrics (self-dual four- 
metrics are hyperKahler ) and for these the constants co, ct are co = 1, ct = 0. Hence we 
necessarily have b(t) = a(t) and the Einstein equations reduce to 

. . . . 
--A&+~, 

_ _ A _ &Y c2 
a2c 2a4 ’ 

_ _ A - (ka2)’ I c2 
a2c 2a4 ’ 

(22) 

(2% 

(24) 

It is not straightforward to solve Eqs. (22)-(24), in fact it is not clear whether they are 
integrable in general. There exists, however, a special solution for which 

a(t) = Ae”‘, c(t) = BeY’, 
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where CZ!, y, A, B are constants. Substituting this ansatz into (22)-(24) we find 

A B2 
“2=-6--@ y =2a. 

Since only the ratio A/B plays a role we are free to choose A = 1, giving B = ,/m. 
Clearly, the solution is invariant under time-reversal t --+ -t; it therefore suffices to consider 
negative parameters IX < 0. The Bianchi type II four-metric thus becomes 

&’ = dt2 + e-2t4=? ((0’)2 + ((r2)2) + 

where (ak} are the left-invariant one-forms (13). A convenient choice of the cosmological 
constant is A = -2/3, for which (25) becomes 

ds2 = dt2 + e-‘((a1)2 + (D~)~) + e-2’(,3)2. (26) 

In (26) one recognizes the Bergmann metric - a non-compact Kahler symmetric space 
SU(2, l)/ U(2). Note that the Bergmann metric is complete (unlike the vacuum Bianchi 
type II metric (10)). It is also BPS. 

Another form of the Bergmann metric where the U (2) group action is manifest is 

ds2 = 
dR2 R2 

(1 + (A/6)R2)2 + 4(1 + (A/6)R2)2 
(a3)2 

R2 

+4(1+ (A/6)R2) 
((a’)2 + (a2)2). (27) 

Expressed in this form the metric is a limiting case of the general U(2)-invariant Taub- 
NUT-Anti-de Sitter family of metrics [34] when N -+ co (N is the NUT charge). Such a 
family can be written in the form (see Eq. (2.6) in [34]): 

_&.2+4,pf@) 3 2 U(r) 
f(r) 

~(r)(g ) + r2U(r>((a1)’ + (o~)~), 

where f(r) = 1 + (A/3)r2(1 + dN/r) and U(r) = 1 + ZN/r. Now, to take the limit of 
large NUT charge, rescale the radial coordinate r = p/N in the above formulae and take 
N + 00. Metric (28) becomes 

ds2 = 2p(l:;;;,3)p) +2~(1+~~)(~~)~+2~((~‘)~+(~~)‘), (29) 

and taking 2p = R2/4( 1 + (A/6) R2) we get back to expression (27). 

5.3. Horospheres 

To elucidate the geometrical structure of the Bergmann manifold and the role played by 
the Heisenberg group we shall now describe the way the Bergmann manifold arises as the 
set of horospheres of an odd-dimensional Anti-de Sitter space. We shall also obtain the 
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Monge-Ampere equation for a Bianchi type II four-manifold. A solution to the equation 
with a negative cosmological constant gives the Kahler potential for the Bergmann metric. 
We make use of the defined complex coordinates and solve the Ricci-flat Monge-Ampere 
equation to obtain the Kahler potential for the Heisenberg metric (11). 

Suppose G/H is a non-compact Riemannian symmetric space. The Iwasawa theorem 
(see e.g. [35]) tells us that every element g E G may be uniquely expressed as 

g = han, 

where h E H c G, a E A c G, n E N c G; A is an abelian and N is the nilpotent 
subgroup of G. This means that we may also think of G/H as a solvable group Gsotv = 
A IX N with a left-invariant metric, where D< denotes a semi-direct product and A D< N is 
a solvable group. The orbits of N in G/H are called horospheres. The set of horospheres 
is labelled by elements of A. They are permuted by elements of H. The simplest example 
would be an n-dimensional real hyperbolic space G/H = ‘W, A = R+ and N = IV-‘. If 
we think of ‘7-P as a quadric in P ((n + 1)-dimensional Minkowski space-time) then the 
horospheres are the intersections of the quadric with a family of parallel null hypersurfaces 
related by boosts. There is a similar description for an n-dimensional Anti-de Sitter space 
Ad& regarded as a quadric in IEn- ‘-2 This description of the hyperbolic and the Anti-de . 
Sitter spaces will be useful in Section 8. 

The case of a complex hyperbolic n-space 3-1; is slightly more complicated. Thinking 
of E2n,2 as C”,‘, the (2n + 1)-dimensional Anti-de Sitter space, AdSzn+t, is given by the 
quadric 

1z012 - -jy ,zy2 = 1. 
a=1 

Then the complex hyperbolic n-space 7-t: is obtained by identifying za with eieza, a = 
1 ,...> n. Thus (ZO, . . . ) z”) are homogeneous coordinates on ‘/YE. The nilpotent group N 
turns out to be the (2n + l)-dimensional Heisenberg group (see Section 7). Let us see how 
this works in detail. It is helpful to recall that the inhomogeneous coordinates 5” are defined 
in the usual way as c” = za/zo and make manifest the action of U(n) on 3-1;. Our aim is 
to find a set of coordinates to make the action of the Heisenberg group N manifest. 

Let us first introduce complex null coordinates u and u: 

u = $(z”+zn), 21 = +gzo - z”). 

Definezandw’,i=l,...,n-ltobe 

z,44 
Zi 

v’ 
w’ = -. 

u 

In terms of the inhomogeneous coordinates { 5’) I“‘} these are 

2 z/z? -- 
z= 1-C” 1, wi=-. 

1-C” (30) 
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A complex hyperbolic n-space is topologically the interior of a unit ball in Cn and the 
map (2“) 5‘“) -+ (IN’, z) provides a bi-holomorphism from the interior of the unit ball in 
C” into the interior of the paraboloid 

As we have mentioned above, ‘FL: is obtained from Ad&,+ 1 as the base of the Hopf fibration. 
with the time-like Hopf fibre parametrized by 8 such that 

z” + z” zeie 

u=7= (z + z - xi IUJi 12)‘/2 ’ 

z” - z” e i0 

v=-T= (z+z-~i~wi~*)‘/2” 

w’e’” 
zI = (z + z - xi It/Jil2)1/2 

(31) 

The real quantity (z + Z - xi 1 wi I*) is invariant under the action of the Heisenberg group 
N parametrized by (a’, b): 

w’ 4 w’+a’, 
z 4 z+ib+C~la’12+Z’wi~ 

i 

Considered as a subgroup of SU(n, 1) c S0(2n, 2), N acts on FL; as 

(32) 

u4u+ (ib+$@12)v+G’zi. 

v 4 v, 

z’ 4 z’ + ui. 
Finally, the abelian group A = [w+ parametrized by h acts as (Z, W') + (A'Z, hw') Or 

u 4 hu, 

v+4-‘v, 

zi 4 zi. 
Having identified all group actions clearly, let us now formulate the problem in terms of the 
KWer potential. The K&hler potential for the metric on the horospheres may be obtained 
from the K5hler potential on the Ad&+1 manifold which in terms of inhomogeneous 
coordinates 5‘” is given by 

K(ca, f”) = -log c 1{‘12 + 1<“12 - 1 . 
i=l 
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From (30), 

and hence the IGhler potential on the horospheres becomes (up to a Kahler gauge transfor- 
mation) 

K=-log z+z-Clw’l” 
( 

. 

i ) 

(33) 

Let us derive the Monge-Ampere equation to which IGhler potential (33) is a solution. 
Since the resulting metric contains the higher-dimensional extension of the Heisenberg 
group (see Section 7) as a group of isometries we must assume that the Kahler potential 
depends only on the real quantity f = z + Z - Ci lwi 12, the Monge-Ampere equation (6) 
becomes an ordinary differential equation: 

(34) 

where K’ = dK/ df. 
Let us make the connection with the form of the four-dimensional Bergmann metric (26). 

In this case n = 2 and there are two complex coordinates (z, w). We can pass from this 
parametrization to the parametrization of (26) in terms of (t, x, y, t) as follows: 

z-i=i(r-y), z+j-wlz,=f, 

w = i(x + iy), t =ef. 

For n = 2 the Monge-Ampere equation (34) becomes 

~1~1’ = -e-AK. 

(35) 

(36) 

In terms of the Klihler potential K (f > the compatible K5hler metric is 

ds2 = -K’dw A dG + K”(dz - W dw)(dj - w dti). (37) 

The K&hler potential (33) for n = 2: 

K = -1ogf = -1oglogt (38) 

is clearly a solution of Eq. (36) for A = -3. The K5hler metric g,g = &a&K- the 
Bergmann metric in complex coordinates - obtained from the Kkihler potential (38) is 

d~2=-jdw*dB+&dz-$dw)(di-wdd). 
f2 

Rewriting this metric using definitions (35) we get the Bergmann metric in the standard 
form (26). 
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Let us solve the Monge-Ampere equation (36) in the Ricci-flat case A = 0. Here we 
present the four-dimensional case n = 2 leaving the treatment of the higher-dimensional ex- 
ample to Section 7. The solution of (36) should yield the KA-rler potential for the Heisenberg 
metric ( 10). Integrating equation 

we get 

where c is the integration constant which, without loss of generality, we may set to zero. 
Substituting these expressions into (37) and ignoring an overall constant factor we obtain 
the Heisenberg metric (11). Note that the prefered complex structure with respect to which 
the KUer potential is defined is the one whose associated Kalrler form is U (l)-invariant. 
It is the two-form Sz, (17) presented in Section 3.3. 

6. Exotic asymptotics: Bianchi types VII0 and Vb 

In this section we propose to investigate p-brane solutions whose asymptotics are more 
unusual than the ones considered in Section 3. We turn to Bianchi types VII0 and VI0 whose 
groups of isometric motions are E(2) and E(l, l), respectively (see Table 1). 7 

We do not discuss the most general manifolds of the above types but rather focus on self- 
dual metrics (which are hyperKahler and hence BPS). Vacuum four-metrics of this kind 
are Ricci-flat K8hler metrics. The Einstein equations (2)-(5) in the self-dual case reduce to 
a set of first-order ODES: 

2 
-a’ = --n,a2 + n2b2 + qc2, 
a 

fb’ = -n2b2 + n3c2 + n,a2, 

2 
-c’ = --qc2 + n1a2 + n2b2. 
C 

For convenience we have introduced another radial coordinate 17 in place of t such that 
dr = abc dq and ( )’ denotes differentiation with respect to 9. 

In Sections 6.1 and 6.2 we solve Eqs. (39)-(41) to obtain self-dual vacuum Bianchi type 
VII0 and VIo metrics and discuss their properties. In Section 6.3 we discuss Bianchi type 
VII0 and VI0 manifolds with negative cosmological constant. 

’ We consider type. VII0 spaces before type VICJ spaces because the type VIII-J metric is in some sense simpler 
since its isometry group is Euclidean. 
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6.1. Vacuum solutions of Bianchi type VII0 and Solvmanifolds 

The group of isometries of a self-dual Bianchi type VII0 metric is E(2), whose structure 
constants are n 1 = n2 = 1 and n3 = 0 and a set of left-invariant one-forms is 

a’ = costdx +sintdy, a2 = - sin tdx + cost dy, CT~ = dt. (42) 

The self-duality equations (39)-(41) become 

2 
;a’ = -a2 + b2, 

2 
hb’ = -b2 + a2, 

2 
-c’ = a2 + b2. 
C 

These are easily solved to yield the metric 

ds2 = g sinh2q(dq2 + (c~)~) + coth q(a1)2 + tanh r](a2)2, (43) 

where A is the integration constant. Let us estimate the volume of a large metric ball as was 
done in Section 3 for the Heisenberg manifold. Introducing as before the effective radial 
coordinate t to return to the ansatz (1) we find that the metric volume grows as t2 for large 
t. Interestingly, this is the predicted volume growth of another type of a degeneration of 
the K3 surface in the Kobayashi’s review [32]. In fact Kobayashi proved the existence and 
completeness of a gravitational instanton whose three-dimensional hypersurfaces t = const 
represent a collapse of Solvmanifolds. * The non-compact complete metric on a degenera- 
tion of the K3 surface is expected to have quadratic volume growth of large metric spheres 
and have as an asymptotic metric the standard flat metric on C* x C*. It is not known 
explicitly. 

The present situation parallels the one we have already encountered with the Heisenberg 
metric. The Heisenberg metric (10) is singular at the origin, but the singularity is resolved 
by passing to another self-dual metric, the BKTY gravitational instanton, whose asymptotic 
form is exponentially close to the Heisenberg metric. The singularity at the origin of the 
Bianchi type VII0 metric (43) may be resolved by passing to a non-singular manifold, whose 
existence and completeness is guaranteed by the general theorem of Kobayashi [32]. 

As we have pointed out, the large metric spheres have quadratic volume growth for large 
t. According to the estimates in Section 4.7, this is the critical volume growth for which the 
boundary term contribution to the gravitational action is constant and finite. 

Alternatively, metric (43) may be obtained by solving the Monge-Ampere equation (6) 
for a Ricci-flat K5hler metric with appropriate symmetries. If we assume that the Kkihler 
potential K is independent of the imaginary parts of z’ = U’ + iv’ and z2 = u2 + iv2 we 
obtain a metric with two commuting holomorphic isometries. If one further assumes that 
K depends only on the combination v (u’)~ + (u~)~ one gains an extra SO(2) isometric 
action. From the first glance the resulting metric appears to be invariant under the direct 

* Usually Bianchi type VI0 group E( 1, 1) is referred to as Solv or Solvable group. It is clear, however, that it 
is the type VII~J manifold that has the volume growth predicted by Kobayashi. Its associated isometry group 
E(2) is also solvable. 
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product SO(2) x a8* but in fact it turns out that the group of isometries is the semi-direct 
product SO(2) D< [w* G E(2). Thus one obtains a Bianchi type VII0 metric. 

A short explicit calculation reveals that in polar coordinates (I, t): 

u’ = rcosr, u* = r sin T, 

the Kahler potential depends only on r and the metric becomes 

ds’ = K”dr* + rK’(a3)* + !&+ + (a2)2) + K” _ _K’ (&)‘, 
r ( r ) (44) 

where K' = dK/ dr and {ak} are the left-invariant E(2) one-forms given in (42). Then the 
Monge-Ampere equation reduces to an ODE first written down by Calabi [36]: 

K"K' ~ = e-AK 
r 

(45) 

with A the cosmological constant. When A = 0, the vacuum case, Calabi found that 

K’(r) = dn, (46) 

where a is an integration constant. The metric (44) with (46) is precisely the metric (43). 
Incidentally, this metric is the helicoid metric found by Aliev et al. [37] who obtained it 
using the connection between the real Monge-Ampere equation and minimal surfaces. It is 
singular at n = 0. 

6.2. Vacuum solutions of Bianchi type VZo 

The group of motions preserving Bianchi type VI0 metrics is E( 1, 1). From Table 1 the 
structure constants are n I = 1, n2 = - 1 and n3 = 0, and hence the left-invariant one-forms 
are 

cr’=coshrdx+sinhrdy, cr*=sinhrdx+coshrdy, a3 = dt. (47) 

The self-duality equations (39)-(41) become 

ia’ = -(a* + b*), ih’ = a* + b*, 
2 -ct = .z _ b’, 
c 

These can be easily solved to give the following Ricci-flat Kahler metric: 

1 
ds2 = g sin 2r](dq* + (a”)*) + cot q(a’)’ + tan ~(a’)‘, (48) 

where h is the integration constant. This metric is incomplete at the origin r] = 0. 
Such self-dual metrics of Bianchi type VI0 were also displayed by Aliev et al. [37] and 

were referred to as catenoid metrics. 
One can find a description of the metric (48) in terms of a Kiler potential as was done in 

the previous section for the type VII0 metric (43). Again assuming that the K5hler potential 
K is independent of the imaginary parts of z’ = u’ + iv’ and z2 = u2 + iv2, we obtain a 
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metric with two commuting holomorphic isometries. Now assume that K depends only on 
the combination ,/(ul)* - (u*)* thus gaining an SO(1, 1) isometric action. The resulting 
metric has as its group of isometries the semi-direct product S 0 (1, 1) LX R* = E( 1, 1). 

Defining new coordinates (r, t) as 

u’ = rcosht, u2 = r sinht, 

we find that the Kahler potential depends only on r and the metric becomes 

ds2 = K”dr* - rK’(a3)* + T((cF’)* + (a*)*) + 
( r ) (49) 

K” - c (a’)*, 

where (ok) are the left-invariant E (1, 1) one-forms (47). The Monge-Ampere equation in 
this case differs from Calabi’s equation (45) by a sign 

K”K’ - = -e-AK 
r 

In the vacuum case A = 0 and the Monge-Ampere equation 

K”K’ 
- = -1 

r 

is solved by 

K’(r) = dn, (51) 

where a is the integration constant. This is the metric (48). 

6.3. Bianchi type VZZo and VZo with negative cosmological constant 

If the cosmological constant A is negative, Calabi [36] proved that there exists a solution 
of (45) giving a complete non-singular metric on R4. Unlike the analogous metric of Bianchi 
type II (the Bergmann metric of Section 5.2), but like the Kasner-Anti-de Sitter metric of 
Section 5.1, this metric is not homogeneous. 

Analogously, Calabi’s argument concerning the solution of Eq. (45) with negative cos- 
mological constant is applicable to the Bianchi type VI0 case. It may thus be argued that 
solutions of (50) exist, although the completeness of the metrics has to be demonstrated. 

7. Higher-dimensional examples of domain walls 

In this section we would like to give examples of domain walls of the form M x iEPe3, ’ 
in 11 dimensions, where manifold M remains hypersurface homogeneous but has dimen- 
sion higher than four. Firstly we describe Calabi-Yau manifolds which are the higher- 
dimensional generalizations of the BKTY instanton of Section 4.6. We find their asymptotic 
metrics by solving the vacuum Einstein equations in 2n dimensions. We then give particular 
examples of such asymptotic metrics which arise as extensions of the vacuum Bianchi type 
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II or Heisenberg metric (11) to higher dimensions. In addition we present three series of 
higher-dimensional metrics originating from four-metrics of other Bianchi types: the type 
I or Kasner (7), the type VIb (43) and type VI0 (48) metrics. We do so by generalizing 
the relevant Monge-Ampere equations and arguing the existence of solutions which pro- 
vide the Kahler potentials for the metrics in question. By the extensions of Bianchi type 
metrics from four to arbitrary number of dimensions we mean the following. The Bianchi 
type I isometry group R3 extended to n + 1 dimensions is simply R”. The Bianchi type 
II three-dimensional group of isometries given by the left-invariant one-forms (13) may 
be easily generalized to a (2n + 1)-dimensional group parametrized by (xi, y; , r), where 
i = l,..., it, with left-invariant one-forms: 

n 

0: = dxi, ai = dyi, a3 = dt - 
c xi dyi 7 (52) 

satisfying 

da’ = - 
c 

ai’ /qT 

The Bianchi type VI0 and VII0 groups are three-dimensional groups E (1, 1) and E(2), 

i=l 

respectively. In higher dimensions these become E (n - 1, 1) and E(n), respectively. 

7.1. Higher-dimensional BKTY metrics and their asymptotic forms 

In this section we shall rely heavily on [32] in which Kobayashi proves the existence 
theorem for complete Ricci-flat Kahler metrics on X - D with ct (X) = [D], where X is 
a Fano manifold9 and D is a complex codimension 1 hypersurface in X. Here [D] is a 
Poincare dual of D. From Yau’s solution to Calabi’s conjecture one may infer that D carries 
a Ricci-flat Kahler metric. Although the gravitational instanton is not known explicitly, 
Kobayashi provides some detailed information on the asymptotic form of the metric. It has 
the following properties. 

Let t(p) measure the distance from some fixed point in X - D to a point p E X - D. Then 
far away from the chosen fixed point, i.e. for large t, the metric spheres have a structure of 
an S’ -bundle over D. The size of the fibre, with respect to the induced metric on the metric 
spheres, decays as t-(n-‘)l(n+‘), while the radius of the (n - 1) complex-dimensional base 
grows as t ’ /n + 1. From this one estimates the volume growth of a large metric ball to be 

Vol - 
s 

$-1)‘1/n+1 . t-(“-l)/(n+l) & _ t2n/n+l (53) 

In this section we shall use the above information to make an ansatz for the asymptotic 
form of the metric and to show that it is an exact solution of the vacuum Einstein equations. 
We find that although the solution is Ricci-flat and Kahler it is singular. In fact, it bears the 
same relation to the gravitational instantons of Kobayashi as does the Heisenberg metric to 

9 X is Fano if it has an ample canonical bundle, or in other words, if its first Chern class is positive, cl > 0. 
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the BKTY gravitational instanton. Outside a compact set the complete metric differs from 
this asymptotic form by exponentially small terms. 

It can be easily seen that the Heisenberg manifold (11) is a special case of this setup for 
n = 2. As we have already described in Section 4.6, Kobayashi points out that for n = 2 
these gravitational instantons arise as certain degenerations of the K3 surface. The metric 
spheres at large t represent a collapse of a Nilmanifold to a flat T2, and the volume of a 
metric ball grows as t 4/3 The Ricci-flat metric on D is flat only in this case. . 

Consider the following ansatz compatible with the above remarks: 

ds2 = dt2 + a2(t)gab dxa dxb + c2(t)(dr - 2A)2. (54) 

Here &b is the complete Ricci-flat KMer metric on D, a, b = 1, . . . ,2(n - 1); t is the 
periodic coordinate on the canonical bundle over D and A is a one-form that depends only 
on xn such that its exterior derivative is proportional to the Kahler form on D, dA = -aJ, 
0 is constant. 

The Einstein equations for (54) reduce to a system of second order ODES for the 
functions a(t) and c(t): 

. . 
O=;+E+(2n-3) 

2 

ac 
+202>, (55) 

. . 
0=:+2(n-l)!, 

a (56) 
. 

0 = E + 2(n - l>E - 2(n - l)o$ 
ac (57) 

We therefore look for solutions with polynomial dependence on the radial coordinate t of 
the form 

c(t) = pUtAl, u(t) = “P2, (58) 

where CL, u, ht , h2 are constants. Substituting (58) into Eqs. (55)-(57) we find 

2 

O=Jt2(h2 - 1) +)Ltk2 + (2n - 3)hi +2c+2(~+~1-2~21, (59) 

0 = Al @I - 1) + 2(n - l)L2@2 - l), (60) 

0 = hl (hl - 1) + 2(n - l))Lth2 - -2(n - l)oZ$2’t+~‘-2~2), (61) 

In accordance with ansatz (58) the Eqs. (59~(61) must reduce to algebraic equations for 
the constants p, v, ht , AZ. Hence we find that At and L.2 must satisfy 

at =2h2 - 1. (62) 

Substituting (62) into (60) we obtain a quadratic equation for ~2: 

(n + l)$ - (n + 2)h2 + 1 = 0, (63) 
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which is solved by 

A(‘) - l (2) 
2 n+l’ 

h, =I. 

From (62) we have 

*“’ = n-1 -- h’2’ = 1 
nfl’ ’ 

We discard the pair (A?‘, (2) A, ) = (1, 1) since it satisfies both (59) and (61) only for n = 0. 

Wearethusleftwiththeotherpairofsolutions(h1, h2) E (A!‘), hi”) = (-(n - l)/(n + l), 
l/(n + 1)). Let us now find the constants 1, v and D. From (61), or equivalently from (59), 
we have 

,2Z= l 
V4 (n + 1j2 ’ 

The values of I_L and v for n = 2 may be read off from the Heisenberg metric (11): w = 
(3/2)-l/’ and v = (3/2)“3. With these values (66) gives 

*El 
2’ (67) 

Since parametrization of the one-form A should not depend on the dimension of M, we are 
compelled to choose constants p and v to satisfy (66) with 0 = l/2 and consistent with 
their values for n = 2. An appropriate choice is 

n+l -(n-l)/(n+l) n + 1 I/(n+l) 
PL= -g- 

C > 
v= __ 

( > 2n 
(68) 

Absorbing the constant -u = - l/2 into the definition of the one-form A we may now 
write down the asymptotic metric for the 2n-dimensional BKTY gravitational instanton: 

where now dA is precisely the K8hler form on D. 

Metric (69) indeed has the volume growth predicted by Kobayashi: 

Vol - 
.I 

t-(n-l)/(n+l) . t2(n-1).1/(n+1) & _ t2n/(fl+1). 

7.2. Bianchi type I 

(6% 

Metrics of Kasner type (7) exist in arbitrary number of dimensions; the metric becomes 

ds2 = dt2 + t2al (dx’)2 + t2a2 (dx2)’ + . . . + tZfffi (dx”)2, 
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where 
n n 

c ‘.+=I= (Y;. c (70) 
k=l k=l 

Just as the Kasner metric (7), these metrics are not BPS. 

7.3. Bianchi type II 

A particular case of the asymptotic BKTY 2ndimensional metric (69) is that whose 
isometry group is the higher-dimensional Bianchi type II group. In this case the arbitrary 
Calabi-Yau (2n - 2)-dimensional metric gab dxa dxb is the flat metric 

n-l 

gab d_? dxb = C(D;)~ + (~f)~, 
i=l 

and the term involving the connection on the canonical bundle over g&, dx” dxb is simply 
(cr3)2; where {a/, of, (r3} are the one-forms defined in (52). 

To find the K&hler potential generating the metric (69) for the special case of Bianchi 
type II isometry group we solve the Monge-Ampere equation (34) with A = 0: 

(K’)n-lK” = (-l)“_‘. (71) 

It is sufficient to know K’(f) where f = z + Z - xi I& I2 since the higher-dimensional 
Bianchi type II metric is expressed in terms of K’ and K” as follows: 

ds2 = -K’ c dw’ A dii+ + K” 
i 

(dz-TGidtui)(di-tuidii+), 

which after coordinate redefinitions (35) with {w , x, y) replaced by ( wi , xi, y’ } becomes 

ds2 = --K’x((d~‘)~ + (dyi)2) + K”df2 + K” 
i 

(dr-T?dyi)2. (72) 

Integrating Eq. (71) we find 

K’ = (_l)(“-‘)/n(,$)t/” 

and hence 

K” = (_l)(n-l)/“(nf)-(“-‘)/“. 

To compare with the metric we have obtained by solving the self-duality equations let us 
define a new radial coordinate t such that 

f= 
n+l ( > 

2n/(n+l) 
-t 

2n 

Written in terms oft the metric (72) is the same as (69) up to an overall constant factor. 
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7.4. Bianchi type VII0 and V&J 

The analysis based on solving the Monge-Ampere equation (45) and (50) may be ex- 
tended to arbitrary number of dimensions. In fact in the case of Bianchi type VII0 it was done 
by Calabi [36]. If M has real dimension 2n with complex coordinates za , a = 1, . . , n and 
one assumes, as was done in Section 6.1, that the Kalrler potential K is independent of the 
imaginary parts of za = r.P + iv’ and is solely a function of I = (U’)2 + . . . + (u”)~, the 
resulting metric will have the isometry group E(n). The Monge-Ampere equation reduces 
to 

n-l 
K” = 1. 

It is solved by 

s 

r 
K(r) = (c + r”“) dr, c = const. 

0 

The manifold is a higher-dimensional vacuum Bianchi type VII0 metric whose isometry 
group is E(n). It is incomplete. Arguments analogous to the ones just given extend to the 
Bianchi type VI0 metrics. 

8. Other Bianchi types: Bianchi type III 

We have not attempted here to survey all known cohomogeneity one Einstein metrics. 
Even in four dimensions this would be a formidable task. Some pertinent references in that 
case are [5,12]. However we would like to comment on the Bianchi type III situation since 
it may well prove relevant for various applications of Anti-de Sitter space-time. 

The most general diagonal Lorentzian Bianchi type III local solution is given in [38]. A 
simple analytic continuation of the metric in [38] gives a Riemannian metric with negative 
scalar curvature A < 0: 

ds” = ; dt* d@, do2 
-+ 
sinh2 t 

-+- 
sinh2 t 

(73) 

which is presumably the most general local solution with this signature. Setting 

t =logtanh; 

gives 

ds2 = $(dt2 + sinh2 t dR2, + cosh2 t da2). 

In (73) dS21 1 is the standard metric on ‘H2. The isometry group of the manifold is therefore 

SO(2, 1) x SO(2). The group SO(2, 1) has a two-dimensional subgroup 62 which acts 
transitively on ti2 and combined with SO(2) we get a three-dimensional Lie group with 
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three-dimensional orbits whose Lie algebra corresponds to Bianchi type III. Explicitly we 
consider ti2 in horospheric coordinates (x, y): 

d_x2 + dy* 

Y2 

and e;2 = R K R is generated by alax and xa/ax + ya/ay. 
In fact the metric (73) is that of hyperbolic four-space l-f4 (cf. Section 5.3). This may be 

seen by isometrically embedding (73) into [E4, ’ as 

(X0)2 - (X1)2 - (X2)2 - (X3)2 - (X4)2 = 1, 

where 

X3 = cash t cos (Y, X4 = cash t sin a, X0+X’ = isinht, 
Y 

X2=rsinht. 
Y 

It is now obvious that the Bianchi type III solution (73) may be extended to (n + 2) 
dimensions by replacing the metric on x2 by that on tin. The group 62 is replaced by the 
group 6, = [w tx R-t generated by a/ax’ and x’a/ax’ + ya/ay, i = 1, . . . , n - 1, then 
the generalization of the Bianchi type III group is (R K R-l) x SO(2). 

9. Conclusions 

In this paper we have studied various solutions of M-theory having the symmetries of a 
domain wall. Our most important example (10) is BPS and is based on the Bianchi type II 
group, otherwise known as Nil or Heisenberg. Usually this is regarded as an orbifold solution 
with singularity. We have shown how the singularity may be resolved to give a complete 
non-singular solution representing a single-sided domain wall. We have also shown how 
this example may be generalized to higher dimensions. 

Finally, we have considered a number of related solutions, some BPS, both in four and 
higher dimensions which we believe may be relevant to, for example, the AdSKFT corre- 
spondence and other future applications of 11 -dimensional supergravity. 
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